Inferring r-process yields from Neutron Star Mergers:

Uncertainties in Kilonova Modeling and the role of UV
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Table 1

I ntrOd u Cti on Estimates of Ejected Masses for High-opacity
Lanthanide-rich Material (mgy,) and Medium-opacity “Winds” (m,,), Sourced
from the Recent Literature for GW170817
« GW170817 demonstrated the potential Reference Mayn [M] my, [M:)]
of GW+EM observations of NS mergers:  Abbott et al. (2017a) 0.001-0.01
most direct observation of r-process Arcavi et al. (2017) 0.02-0.025
. Cowperthwaite et al. (2017) 0.04 0.01
production to date. But what can we Chornock et al. (2017) 0.035 0.0
really learn from the observations. Evans et al. (2017) 0.002-0.03 0.03-0.1
Kasen et al. (2017) 0.04 0.025
———T ——————7 Kasliwal et al. (2017b) >0.02 >0.03
I Wind + dynamical ejecta, orientation: 8= 20° ] Nicholl et al. (2017) 0.03
15 ?vd= 0.2 ¢, my=0.015 Mgy, vy= 0.08 ¢, different my 1 Perego et al. (2017) 0.005—-0.01 10—5 — 0.024
Rosswog et al. (2017) 0.01 0.03
Smartt et al. (2017) 0.03-0.05 0.018
1 Tanaka et al. (2017) 0.01 0.03
e Tanvir et al. (2017) 0.002-0.01 0.015
] Troja et al. (2017) 0.001-0.01 0.015-0.03

AB mag
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Getting from the observations to constraining properties
of the merger ejecta requires multiple aspects of

Tk T md=g-gg§5~5u \ ®oe, simulation (merger, disk calculations, and radiation flow)
[ — J+ = - mg=0. sun . . .
[ y+6 —- mg=0.013 Mgy, .y and physics (atomic, nuclear cross-section, dense

35+ T r+9 a <

1

1

time [d]

nuclear matter, neutrino, ...)
Can we maximize what we can do with observations?
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Getting exact yields is critical for detectability and r-process production

Lookback time [Gyr]
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« With the high rate predicted by GW170817,

a yield somewhere between the minimum iy LIGO/Virgo (GW170817)
and maximum values was consistent to 5, 10° . . _
explain the r-process production in the i Galactic chemical evolution
universe (e.g. Cote et al. 2018). Even so, & 10* Mg, =3.0 x 1078 M,
there is evidence that they can’t produce all o
the r-process elements (Cote et al. 2019). & 103

* We now know that we were “lucky” with %
GW170817 (on par with our luck with SN = 102
1987a). The rate is now ~3 times lower, %
requiring the average yield to be equal to z | Fopulation synthesis Cote et al. 2018
the highest values predicted by GW170817 10 . ' A .
: . 0.0 0.5 1.0 1.5 2.0
(if GCE calculations are correct). 7 (fedshit)

* These high yields are also important in Merger rate now believed to be 80-800 Gpc-3 y-! (Abbott
determining the detectability of these et al. 2021more consistent with population synthesis).
events. To explain the majority of r-process, mergers must be at

the high end of r-process production.
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Pathway to Production (Understanding the Uncertainties)

composition (both for
opacities and energy
deposition), and
atomic physics.
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Detailed merger and

Physics and
numerical
uncertainties include
angular momentum
conservation, neutrino
physics, equation of
state, flna_l escape range of nuclear
fractions and uncertainties. 1

trajectories. 0.1%5

—
(=2}

r-process
nucleosynthesis
relies both on
these trajectories
but also on a broad
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Energy Deposition

« Energy deposition comes from y-rays,
e- and a-particles. — A _ ~. Fonget

« Preliminary studies have been done 1042 -, al-2021
assuming angle-averaged interactions
(stopping power) and spherically

2016 and subsequent papers). Many

light-curve calculations use the

formulae derived from these studies. _1 -
« Magnetic field effects, breaks from S

Y% GRB F125W

™,

[ & GW170817 (i-ban

L 1”1 ul

angle-averaged properties, detailed €0 = 1 x 101 “
ejecta morphologies can all alter this érp0 = 1.5 x 1010
heating. 1040 | mm—épp, 0 = 2 x 10" “0 2
C = w0 = 3 % 1010 ¢ -
C ool P 1 L 3 g araal 7]
10° 101

ot (days)
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Geometry Effects on the Light-Curves
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Even with a 2-component model, the geometry can
alter the light-curves dramatically (Korobkin et al.
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Uncertainties in Opacities

There are a number of 1e35 fo= 10_3, Day 6.30
uncertainties in calculating 4.0 -
opacities: —— Sobolev
« Current atomic models do not 351 i R - Binned-Inl
match ~ 130 )
. NLTE effects <"1 MKy 0 Expansion-Inl
(radiation/electron SIJ 251
distributions) will alter the :5 Fontes et al. 2020
opacities — 2.0
» The implementation of the 2 15
opacities also leads to E
uncertainties: 1.0 -
» Continuous Sobolev
: . . 0.5
» Expansion approximation AN

» Binned approximation

&
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39.0

Velocity Distribution

385}

Although models of mergers are

improving, getting accurate velocity e
. . . . . 43‘ H N ) ! ! H . H .
profiles of the ejecta is difficult. I A N
-2 1 o A A U : : : .‘
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3 Although these distributions do not affect
3 -6 g .
From the models the late-time _IR much (equivalent to a
. of Miller et al. factor of few in the total m.a.ss). Other
2019 bands that are more sensitive may be
- used to constrain the velocity distribution.
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UV is sensitive to many ejecta uncertainties

UltraSat is a wide-field UV imager (will detect GW

counterparts)
UVEX can quickly slew to GW counterparts to get UV
spectra.

! , ! ! | UV will constrain
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d1.0

Ultraviolet probes shock 0s | 1os
interactions 0.6 | {os

« Ultraviolet probes the outermost o 1%
ejecta: for discussions see Arcavi T 1
(2018), Banerjee et al. (2020). But oo F =5
we must get the observations as 05 - 1os
soon as possible. Foal |, &

- emergence of the magnetar outflow Eall I 0_4/5;
can reheat the ejecta: e.g. LiandYu = | Jom
(2016), Wu et al. (2021), Jordona- ook — L ZLF ],
Mitjans et al. (2022) oa|f— o1 T T T T aeen 1

- Shock interactions of the jet with the ) 1™
outflow may also reheat the ejecta to ol B 1%°
produce UV: Klion et al. (2021) o1 b 1%
(right). 192
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UV Light Curves and Spectra can Probe Abundances as well
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Understanding Kilonovae is hard!

Observations: We need as much broadband data as possible. UV is particularly sensitive to many
ejecta properties.

Theory: Quantitative Solutions require broad physics input as well as detailed numerical calculations.
This will require a broad set of groups to work together — a number of centers are being developed to

facilitate this collaboration (e.g. N3AS, NP3M, CeNAM, ...)

_ , Atomic physics, charged
Nuclear Equation of State, Nuclear Cross Sections, particle transport, plasma

Neutrino Physics Fission recycling, ... effects

Mergele D isk Ejecta Evolution: Light-Curve Calculations:

CalollE 0 etic Interactions, Boundary Energy Deposition,

Fields, Transport, 19! _
Resolution effects Opacity implementation
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