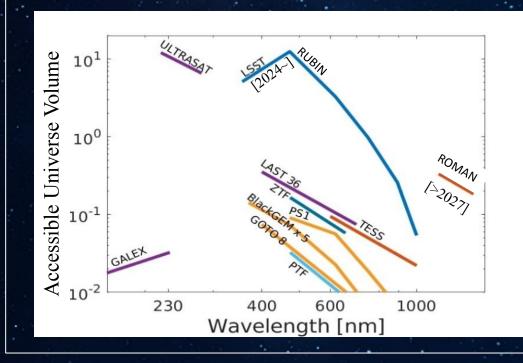
ULTRASAT: A Wide-Field UV Space Telescope

Revolutionizing our view of the transient universe

PI	E. Waxman (WIS)	Funding	Industry
Program Manager	U. Netzer (ISA/WIS)	partners	partners
Deputy PI	A. Gal-Yam (WIS)	ISA	IAI
Camera PI	D. Berge (DESY)		
Project Scientist	Y. Shvartzvald (WIS)	WIS	Elop
Science Lead	E. Ofek (WIS)	NASA	Tower
Payload Lead	S. Ben-Ami (WIS)	DESY	
Technology Lead	O. Lapid (WIS)	[*/ []] f	

Yossi Shvartzvald | Weizmann Institute of Science

ULTRASAT's uniqueness


Key Properties

- Very large, 200 deg², field of view
- High UV (230-290nm) sensitivity: 1.5 x 10⁻³ ph/cm² s (900s, 5σ) [m = 22.5]
- Geostationary orbit

Key Capabilities

- Monitor an unprecedentedly large volume of the Universe
- New window in wavelength (NUV) and in cadence (minutes - months)

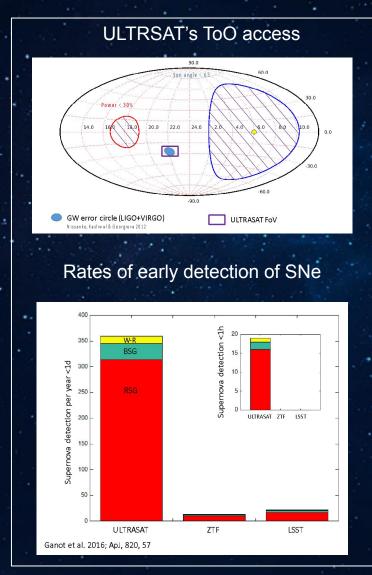
Transient detection rates of leading surveys

Shvartzvald+ in perp.

Page

- Real-time alerts to ground/space-based telescopes (GEO orbit), initiate world-wide follow-ups
- ToO: Instantaneous >50% of the sky in <15 min for >3 hr

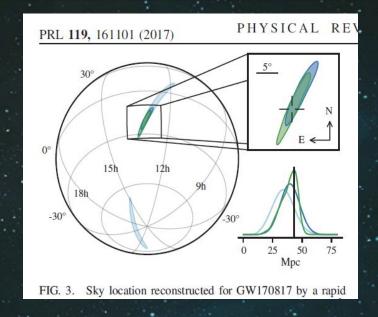
ULTRASAT - Key Science Goals

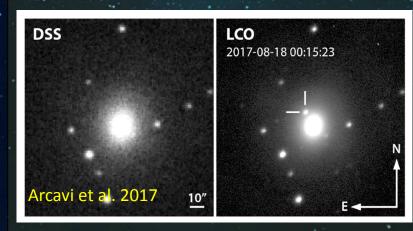


<u>EM counterpart to GW sources</u> Starting 2026: ~ 10s NS-NS merger events per year ~100 deg² error boxes ULTRASAT will provide:

- Fast localization of NS-NS/BH mergers Rapid, <15min, access to 50% of the sky Cover GW error box in a single image
- UV light curves to measure ejecta properties

Death of massive stars

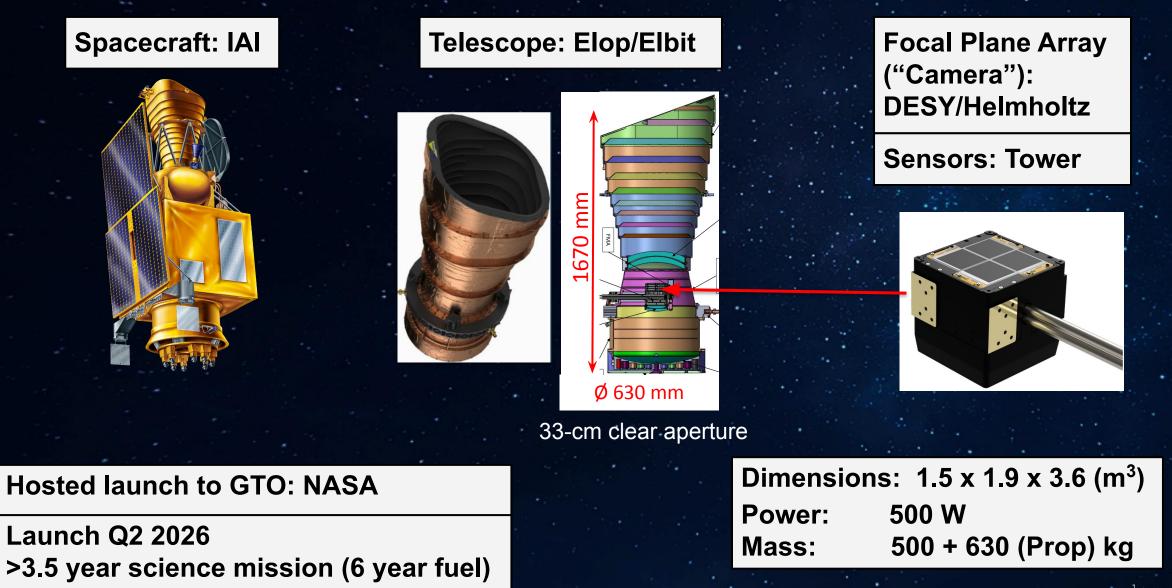

- High quality early high cadence UV data Rapid alerts for follow-ups, 100's of SNe including rare types
- Measure properties of SNe progenitors
- Map progenitors to SNe types
- Reveal pre-explosion evolution and mass loss



First detection of GW from a NS merger [GW170817]

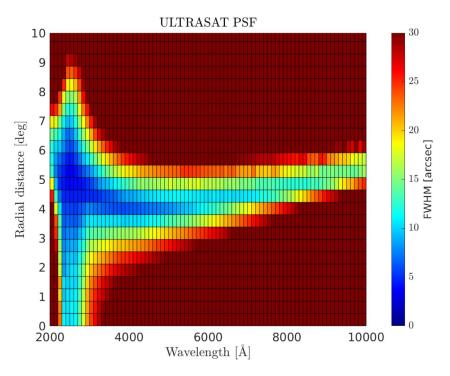
- Very nearby, ~40 Mpc Light detected after 0.5 day, UV bright.
- ULTRASAT is far superior to other searches
 - Identifying light by searching over all galaxies within GW error volume- will be prohibitive, at ~300 Mpc - 1000's of galaxies.
 - Detection in other bands (infra-red, radio) will be highly challenging.
- Heavy elements beyond Iron produced, How heavy (Germanium or Gold) – uncertain. More detections, with earlier light detection, are required.

Strong support to ULTRASAT


ULTRASAT: A broad science impact

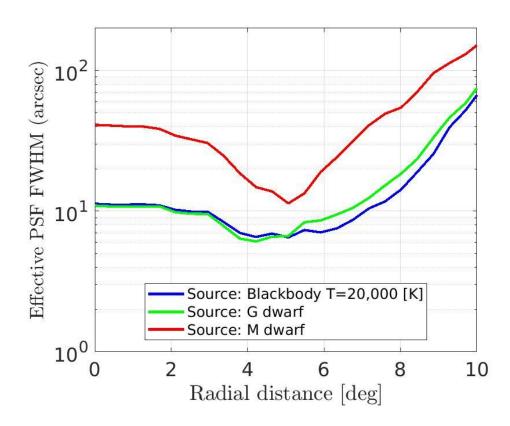
Source Type		# Events per 3 yr mission	Science Impact		
Supernovae					
	Shock break-out and	>40	Understand the explosive death of massive		
	Early (shock cooling) of core collapse SNe	>500	stars		
	Superluminous SNe	>250	Early evolution, shock cooling emission		
	Type la SNe	>40	Discriminate between SD and DD progenitors		
Compact Object Transients					
	Emission from Gravitational Wave events:	~25	Constrain the physics of the sources of		
	NS-NS and NS-BH	~25	gravitational waves		
	Cataclysmic variables	>25	Accretion and outburst physics		
	Tidal disruption of stars by black holes	>250	Accretion physics, black hole demographics		
Quasars and Active Galactic Nuclei					
	Continuous UV lightcurves	>7500	Accretion physics, BLR Reverberation		
		~7500	mapping		
Stars					
	M star flares	>4×10 ⁵	Planet habitability, magnetospheres		
	RR Lyrae	>1000	Pulsation physics		
	Nonradial hot pulsators, e.g., α Cyg, δ Scuti,	>250	Asteroseismology		
	SX Phe, β Cep etc. types	~200	Asieroseisinology		
	Eclipsing binaries	>400	Chromosphere and eclipse mapping		
Galaxies and Clusters					
	All Sky Survey – galaxies	>10 ⁸	Galaxy Evolution, star formation rate		

ULTRASAT implementation


Optical Performance

Chromatic position-dependent PSF

Optimized for:

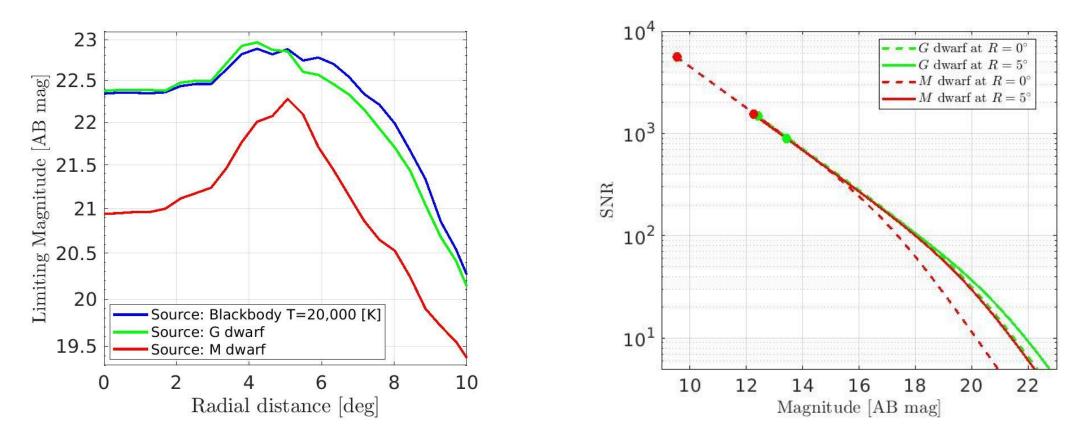

- ULTRASAT band: 230-290nm
- Central 170 deg²

For more details see: Ben-Ami+2022

Effective PSF

Source and position dependent

Shvartzvald+ in perp.


Optical Performance

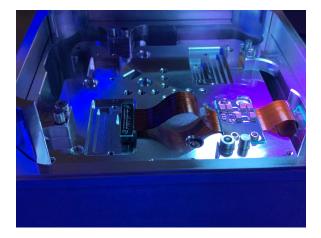
Limiting magnitude

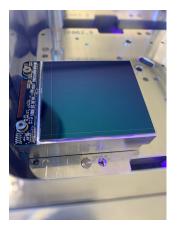
<u>Sensitivity</u>

• Source and position dependent

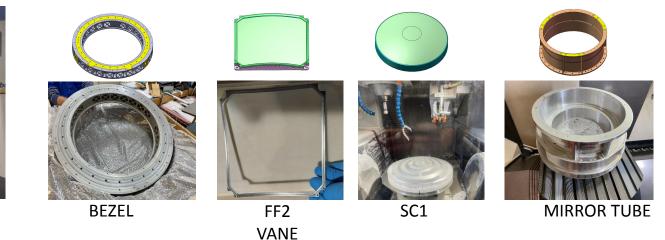
Shvartzvald+ in perp.

Moving into production phase




Development camera structure

First Sensor Tile

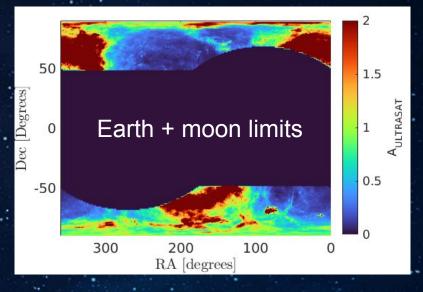


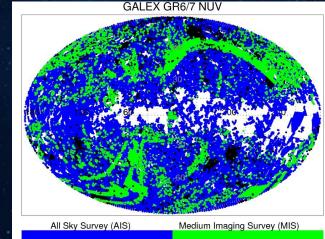
Telescope structure and optics

MIRROR

ULTRASAT: Mission Profile

SURVEY (\rightarrow Key goal 2)


- High cadence 200 deg² with 5 min cadence (21 hr/day)
- Low cadence 8000 deg² with 4 day cadence (3 hr/day)
- Real-time data download and analysis -Alerts <15min of observations


TARGET OF OPPORTUNITY (ToO's; \rightarrow Key goal 1)

- Instantaneous >50% of the sky in <15 min for >3 h
- No limit on ToO number, except for max 25/yr with negative power balance (33%)
- Continuous transmission to the ground

UV ALL SKY MAP

- 3hr/day during the first 6 months
- 10x deeper than current state-of-the-art (GALEX) (>23.5 AB limiting mag @ |b|>30°)

Possible synergies with UVEX

Page

ULTRASAT all-sky map and variable source catalogs (precursor work)

- UVEX NUV band photometric calibration
- Targets for spectroscopic/FUV study

TDAMM science (overlapping operational time)

- Spectroscopic and FUV follow up of ULTRASAT transients
- Specifically, spectroscopy of GW sources

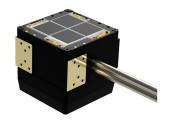
ULTRASAT: Science impact

Revolutionize our view of the hot transient Universe:

- Discovery volume 300 X GALEX
- Continuous (min-mon cadence) in a new window (NUV)
- Real-time alerts to ground/space-based telescopes

A broad impact:

GW sources, SNe, variable and flare stars, AGN, TDEs, compact objects, galaxies.


Groundbreaking science with an affordable satellite mission

ULTRASAT Participating Scientist Program for US PIs ROSES 2022 ULTRASAT PSP Element D.19 submission deadline March 31

Backup slides

Focal Plane Array

Tstd TS207 T1 TS213 T2 TS211 100 Quantum efficiency QE [%] 80 60 40 20 220 240 260 280 300 220 240 260 280 300 220 240 260 280 300 Wavelength λ [nm] Wavelength λ [nm] Wavelength λ [nm]

"Scouts" QE measurements: Optimal ARC selection

- Developed and supplied by DESY
- BSI CMOS from TowerJazz production completed!
- Electronic design passed full verification
- Flight sensors diced and now are being packaged

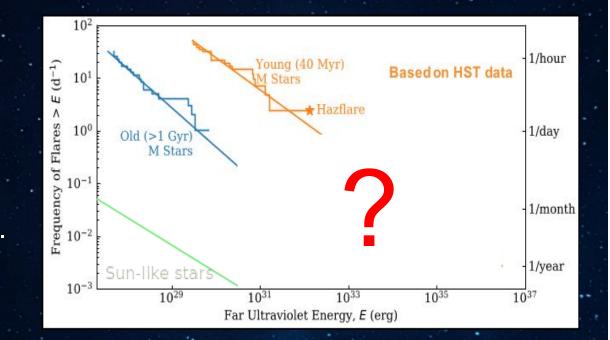
Sensor main Spec.

Photosensitive area (single tile)	45 x 45 mm ² 7.14 x 7.14 deg ²
Pixel size Pixel scale	9.5 μm 5.4 "
Mean QE at 230-290nm	>60%
Operation temperature	200±5 °K
Dark current @ 200 °K	<0.03 e ⁻ /sec
Readout noise @ High-gain	<3.5 e⁻/pixel
Electronic cross-Talk	<0.01%
Readout time	<20 sec
Pixel sampling scheme	Rolling shutter + Dual gain

For more details see: Asif+2021

Bastian-Querner+2021 Liran+2022

Data Policy

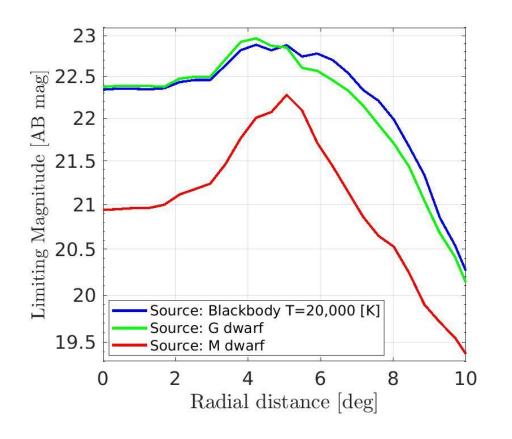


- ULTRASAT real-time alerts publicly available immediately
- All other ULTRASAT data products:
 - Periodic public data releases (DRs), after full calibration and verification
 - Proprietary period 12 months
- Members of the ULTRASAT collaboration and the science working groups will have immediate access to all ULTRASAT data products

Additional science goal: Planet habitability

ULTRASAT

- UV flares and Coronal Mass ejections:
 - May <mark>limit habitability</mark>,
 - May allow prebiotic chemistry,
 - May produce false positive biomarker signatures
 (O₃ from photo-dissociation of H₂O & CO₂).
- Flare rates unknown.
- ULTRASAT will monitor ~10⁶ stars,
 - Measure NUV flare frequency and luminosity distributions
 - Determine best habitable planet candidates (e.g., from TESS)
 for expensive spectroscopic bio-marker searches, e.g. by JWST.


Page 16

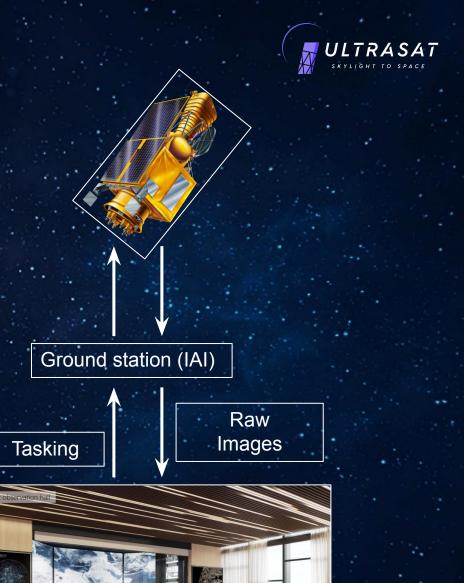
Optical Performance

Limiting magnitude

• Source and position dependent

Background Noise

Source	Variance (e⁻/pix)
Zodiac (Survey)	27
Cerenkov (75%)	15
Stray light (max)	12
Dark current	12
Readout noise [^2]	6
Electronic Crosstalk	2
Gain	1
Quantum Yield	<1
Total	75


Operations

Ground Control Station (@ IAI):

- Command & Control, Telemetry Processing
- Immediate ToO tasking
- Receive imagery data, deliver to WIS (SOC)
- Perform ranging for orbit determination

Science Operation Center (@ WIS) :

- Observation planning
- Image and Data processing
- Scientific Data Products archiving
- Ultrasat Alerts generation

נכון ויצמן למדט