Understanding Transients Through (UV) Spectroscopy

(with a focus on core-collapse SNe)

Luc Dessart

Institut d'Astrophysique de Paris

Layout

- Basics of massive star evolution and explosion
- When/how are core-collapse SNe luminous in the UV?
- Insights from modeling:
 - Shock breakout
 - Explosions in a vacuum
 - Explosions in a CSM and proper interacting SNe
 - Late-time interaction
 - TDE (teaser)
- The need for UV data

Massive star evolution

Evolution of the core:

Nuclear burning in deep interior: H -> He -> C, O -> Si -> Fe core Mixing processes affect surface composition (e.g. N enrichment)

Evolution of the envelope/surface:

Mdot~10⁻⁵M $_{\odot}$ /yr, v $_{\infty}$ =10–10³km/s, M_{final} < M_{initial}

Close binary interaction

Mdot up to ~ $10^{-3}M_{\odot}$ /yr Wide range of possibilities (Case A,B,C .. mass transfer, Common Envelope, Merger etc)

Massive star properties inferred from SN observations:

 $10-25M_{\odot}$ RSG (BSG) stars with massive H-rich envelope => Type II-Plateau (few II-pec) $3-5M_{\odot}$ RSG/YSG and WR stars from binaries=> Type IIb, Ib, IcHuge diversity of interacting SNe (unclear origin)=> Type IIn, Ibn (few Icn and Ian)

Chronology of events in the life of a core-collapse SN

- 1 sec: Fe core collapse, bounce, shock revival
- **1 min to 1 day**: shock propagates through envelope and breaks out (1st EM signature)
- At breakout: $E_{rad} \sim E_{kin}$; $E_{rad} >> E_{th}$; $\tau_{cont} \sim 10^6$
- Mins to days: Final ejecta acceleration to homology (V∞R)
- Ejecta properties: $E_{kin} \sim 10^{51}$ erg, $M_{ejecta} \sim few M_{\odot}$, $V_{exp} \sim 3000$ km/s, $M(^{56}$ Ni) $\sim 0.1 M_{\odot}$
- Generic subsequent Evolution controlled by

Cooling (Expansion & Radiative losses)

versus Heating (Radioactive decay / Recombination / CSM interaction / Magnetar ...).

modulo Transport (dynamic radiative diffusion --- opacity/composition/ionization)

Their variations cause the diversity of CCSN Light Curves and Spectra

- Weeks to months: Photospheric phase (τ>>1)
- After a (few) month(s): Transition to Nebular phase ($\tau << 1$)

Properties and processes

- At breakout : T_{phot} ~ 10⁵-10⁶K for R_{star} from 1 to 10³R_{sun} (WR or RSG)
 - => Radiative precursor: flash of X-ray/UV radiation for R_{star}/c (or $\tau R_{star}/c$) => UV luminous
- Adiabatic cooling: T(m) ~ 1/R(m). Steeper with radiative losses + acceleration
 - $=> T_{phot} > 10^{4}$ K for $\sim 0.1-10$ d (WR-RSG) => Hot BB, ionizing photons => UV luminous
 - => Key processes: Photoionization + recombination, electron scattering
 - => Photospheric layer conveys information on T, ionization, composition, ρ , R_{star}

<u>Note</u>: $\rho(m,t) \sim \rho(m,t_0) (t_0/t)^3$ so 1d -> 2d comparable to 1yr -> 2yr

- Interaction with atmosphere, wind, or distant CSM:
 - => many mechanisms: wave excitation, nuclear flashes, binary effects/RLOF ...
 - => Potential power source at all times
 - => Thermalized shock power comes out in UV and optical => UV luminous

Insights from modeling

Previous work on modeling UV radiation from SNe

- **Pluses**: origin of emission (RS/FS), flash ionization of ER in 87A, N/C ratio (Fransson et al.)
- Minuses: Only few SNe modeled (generally SNe with signs of interaction) Lack of a physically consistent model

Future work: Aim for global consistency

- Need for a stellar evolution and explosion model (progenitor <-> ejecta <-> CSM)
- Need for Radiation-hydrodynamics (RHD) and Radiative transfer (RT) (light curves and spectra)
- Need to confront to better data (Rapid response, early/late times, UV & optical)
- Need data for all core-collapse SN types (so far, brightest objects, usually interacting)

Numerical approaches (personal)

1) Combined RHD + post-processing with RT :

-> Option 1: assume homologous expansion => nonLTE time-dependent RT (e.g., for SN with no interaction)

-> Option 2: non-monotonic velocity solver => nonLTE steady-state RT (e.g., for strong interactions)

2) Treatment of shock power in nonLTE time-dependent RT (e.g., for weak interactions)

1D Non-LTE Time-Dependent Radiative Transfer with CMFGEN

(Hillier & Miller 1998; Dessart & Hillier 2005ab, 2008; Hillier & Dessart 2012)

Non-LTE Time-Dependent Radiative Transfer with $\ensuremath{\mathsf{CMFGEN}}$

(Hillier & Miller 1998; Dessart & Hillier 2005ab, 2008; Hillier & Dessart 2012)

Rate Equation:
$$\frac{D(n_i / \rho)}{Dt} = \frac{1}{r^3} \frac{D(r^3 n_i)}{Dt} = \sum_{j \neq i} (n_j R_{ji} - n_i R_{ij})$$
Radioactive decayIn case of a weak interaction with CSM, we can treat shock power directly in RT (energy equation)power=> Standard nonLTE time-dependent approachpowerIn case of a strong interaction with CSM, we must take initial conditions (R, V, T, ρ) from RHD simulation \Rightarrow Steady state, non-monotonic velocity solver with T set to T_{hydro} Various approaches offer flexibility to model SNe at different times with different power sourcesImage: RTE 0th moment: $\frac{1}{cr^3} \frac{D(r^3 J_v)}{Dt} + \frac{1}{r^2} \frac{\partial(r^2 H_v)}{\partial r} - \frac{vV}{rc} \frac{\partial J_v}{\partial v} = \eta - \chi J_v$ RTE 1st moment: $\frac{1}{cr^3} \frac{D(r^3 H_v)}{Dt} + \frac{1}{r^2} \frac{\partial(r^2 K_v)}{\partial r} + \frac{K_v - J_v}{r} - \frac{vV}{rc} \frac{\partial H_v}{\partial v} = -\chi H_v$

Model LCs and spectra for BSG and RSG explosions – No CSM

ξι₀(F_λ) +

- Method: nonLTE steady-state RT
- Rapid redward color evolution => Probe photosphere cooling
- Increase in line widths (Doppler broadened) => ejecta acceleration
- High ionization lines of He, CNO etc in the UV
- Potential constraints on abundances, metallicity, reddening

Problem: Models are unconstrained at such times : no UV, no optical spectra

2500

3000

0

500

1000

1500

Rest Wavelength [Å]

2000

RSG star explosion; The first hours to days (Gezari+08)

SN II at early times. No CSM

- Method: nonLTE steady state, `photospheric' modeling
- Constrain photospheric properties (T, ρ, X_i, V), line formation line blanketing, reddening

Type II SNe with CSM

Method: RHD + post-treatment with RT (Non-monotonic velocity solver)

Strong UV flux, weaker optical flux, electron-scattering broadened lines => Probe of CSM, mass loss, atmospheric structure Rapid evolution on day timescale

Problems: rarely observed in optical, never observed in UV Fast response essential

Dessart+17

RSG star explosion in extended CSM (e.g. SN1998S)

Spectrum formation in CSM, then dense shell, then ejecta (witnessed in SN1998S) UV flux >> Optical Flux for many days Never observed in UV

Unique spectral evolution

Already observed (SN1998S,Leonard+00; SN2020tlf, Jacobson-Galan+22)

Note: Information in optical is not bad. Rapid response is the main challenge

Time-dependent nonLTE radiative-transfer with shock power

Dessart+22

Method: nonLTE time dependent RT with constant shock power injected in outer dense shell Tests from 10^{40} to 10^{43} erg/s (Mdot from 10^{-6} to 10^{-3} M_{\odot}/yr)

Spectroscopic evolution in UV and optical until 3 years

Spectroscopic evolution in UV and optical until later times

Work in progress (configuration analogous to SN1998S):

Evolution of ejecta/CSM until the birth of a remnant (10-20yr) Shock power innjected in 1M_{sun} dense shell => strong thermalization Fails to produce high ionization lines from low density CSM: more work needed

UV + optical

=> Need calibration with **3D RHD simulations**

Super-luminous Type IIn SN and Type Ibn SNe

RHD + RT with non-monotonic velocity solver Line formation in CSM and dense shell Narrow lines first and broad (blue-shifted) lines later "Scaled-up" version of SN1998S

Model for explosion in a dense wind

Type Ibn SN2020nxt

HST + ground based Tough to match the UV (missed early phase) Wang+ in prep.

Tidal Disruption Events

Work in progress (with Taeho Ryu and Suvi Gezari) Post-process 3D GR-hydro simulations with 1D... RT assumes steady state, T=T_{hydro}, Z_⊙

The need for UV data

- Most Type II SNe should be very luminous in UV for days (II-P) or years (IIn)
- Line diagnostics: Resonance transitions (high density; CDS) & Forbidden lines (low density, CSM)
- Any hope to include MgII2800 in the UV spectrograph?
- UV range critical to constrain bolometric luminosity => SN 'Engine' (ideally need X-ray+UV+optical+IR)
- UV range is essential to reveal interaction => mass loss / CSM
- Rapid-response to catch the SN while hot and luminous
- Observe from early to late times (wind/CSM on all scales?)
- Follow all core-collapse SN types (-> late-time interaction)
- Strong diversity of SNe in optical => Probably huge in UV
- UV spectra: an uncharted territory for transients

Lv al	pha	NIII	1750	OIV	1342	MGII 2800
HeTT	1640	NTTT	1805	OTV	1407	
nerr	1010		1005		2/03	
HATT	2202	NTTT	1005	014	2495	ATTT 1960
нетт	5205	NTTT	1992			ALIII 1900
		NIII	2740	٥V	1371	
CIII	1175			0V	2785	
CIII	2297	NIV	1719			
		NIV	3480	OVI	1037	
CIV	1107			OVI	1080	
CIV	1169	NV	1240	OVI	1122	
CIV	1230			OVI	1171	
CIV	1549					
CIV	2404					
CIV	2423					

The need for UV data

But

UV range very difficult to model Sensitive to T, ρ, ionization, composition, reddening => Strong blanketing UV flux: Continuum vs. lines Need for model development in coming years