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Mauve science 
Character i se  M-dwar fs  and  the i r  f l a r ing  act i v i ty

ets are detected in transit around stars brighter

than 6 mag. Unfortunately, the brightest M star

is the M0 star AX Microscopii with V ! 6.7, and

there are only a few M stars brighter than V ! 8.

If the JWST has similar imaging capabilities in the

near-IR, the brightness problem would disappear

for M stars, but then the required resolution could

not be attained. Discussions of future telescope

design and specifications are evolving rapidly,

and the situation may already be significantly dif-

ferent than at the time of this writing.3. FLARES, CMES, X-RAYS, AND EUV

AND UV ACTIVITY OF M STARS

One of the factors that affect the potential hab-

itability of planets around M stars is the activity

associated with their chromospheres and coro-

nae. The relevant physical phenomena include in-

termittent and energetic flares, CMEs, stellar cos-

mic rays, enhanced coronal X-rays, and enhanced

chromospheric UV emission. Such events could

severely compromise the habitability of Earth-

like planets within the HZ of M stars [see

Grießmeier et al. (2005) for a detailed discussion

of cosmic ray screening on tidally locked M star

planets and see Khodachenko et al. (2007) and

Lammer et al. (2007) for CMEs], but could also ac-

celerate evolutionary development, either as a

source of environmental and atmospheric fluctu-

ations (Segura et al., 2005) or by enhanced muta-

tion rates and fluctuating selection constraints

(Smith et al., 2004; Grießmeier et al., 2005, S. Pawar

and J. Scalo, manuscripts in preparation), both of

which may increase diversity and accelerate fit-

ness changes as long as they are not lethal.

The activity of M stars is thought to be the re-

sult of strong magnetic fields generated by their

fully or partially convective interiors. Many of the

relevant phenomena cannot be directly observed,

except for flares. Even flaring rates and intensi-

ties require long-duration monitoring, so conve-

nient proxies for this activity are used, such as

optical Ca H and K emission cores, H! emission,

Mg II emission, soft X-ray continuous emission,

and a large number of UV- to soft X-ray emission

lines (see Ayres, 1997). Since stellar activity was

first studied using H! chromospheric emission in

the visible as an indicator of chromospheric ac-

tivity, the most active M stars are usually classi-

fied as dMe, with the e standing for emission. A

thorough review of M star nonflare magnetic

activity is given by Hawley et al. (2000). A

comprehensive discussion of flare stars can be

found in the monograph by Gershberg (2005); for

solar energetic particles, see Reames (1999) and

Miroschnichenko (2001).3.1. Flares
An important concern for M star habitable

planets is undoubtedly the frequent and intense

flares that are common in a large, but uncertain,

fraction of M stars. Flares are sudden and un-

predictable releases of energy that enhance the

visible, UV, X-ray, and radio regions of the stel-

lar spectrum [for reviews, see Butler (1991) and

Haisch et al. (1991); for a useful summary of re-

cent work on M star flares, see Güdel et al. (2003);

for a comprehensive review of all aspects of

flares, see Gershberg (2005)]. Flare activity on M

stars spans a large range of energies, frequencies,

and durations. The smallest flares that can be de-

tected release about 1028 ergs of radiative energy,

while the most active dMe stars exhibit flares

with blue and UV energies as large as 1034–1037

ergs (Hawley and Pettersen, 1991; Liebert et al.,

1999; Table 1 of Güdel et al., 2003). Typical dura-

tions are minutes to hours (Houdebine, 2003),

similar to flares on the Sun. The frequency and

duration of flares are related to the amount of

energy released: the more energetic flares last

longer (Houdebine, 2003) and are less frequent

than are the smaller ones, again similar to the sit-

uation for solar flares. The differential frequency

of flaring as a function of peak or total energy,

N(E), is similar to that established for soft and

hard X-ray flares on the Sun:
N(E) ! aE"x

(2)

where the exponent x is about 2 # 0.4, but the

normalization, a, is much larger than for the 

Sun. See Fig. 2 and Table 1 of Gershberg and

Shakhovskaya (1983) for a summary of U and B

band results for 23 individual flare stars, or

Table 1 of Güdel et al. (2003) for a summary of

results for EUV and X-ray flares. It has been es-

timated that flares more energetic than 1032

ergs, the largest energy observed so far for so-

lar flares (Haisch et al., 1991; Woods et al., 2004),

occur at a rate of !0.1–10 per day in the several

dMe stars for which EUV data exist (Audard et

al., 2000, Fig. 4). Similar rates are found for op-

tical U and B band flares with E $ 1032 ergs
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ABSTRACT

Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable
zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including
frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity.
Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model,
Forecasting a CMEʼs Altered Trajectory (ForeCAT), which predicts a CMEʼs deflection. We adapt ForeCAT to
simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Pegʼs
strong magnetic fields can trap CMEs at the M dwarfsʼs Astrospheric Current Sheet, that is, the location of the
minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections
and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with
increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per
day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the
minimum planetary magnetic field necessary to shield a planetʼs atmosphere from CME impacts. M dwarf
exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however,
require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar
wind, suggesting that CMEs may be the key driver of atmospheric losses.

Key words: stars: activity – stars: low-mass – stars: solar-type

1. INTRODUCTION

Recent observations by the Mars Atmosphere and Volatile
Evolution (MAVEN) spacecraft have shown that coronal mass
ejections (CMEs) can have a significant impact on the Martian
atmosphere, and may have influence Mars’ long-term atmo-
spheric evolution (Jakosky et al. 2015). Increases in the
external ram and magnetic pressure, due to the passage of the
CME, compress the Martian magnetosphere, which in turn
affects the ionosphere and neutral atmosphere. Comparison of
MAVEN observations and numerical modeling show that the
impact of a CME on 2015 March 08 caused over an order of
magnitude increase in the ion escape rate on the dayside as
compared to quiescent times.

Evidence from our own solar system suggests that space
weather can affect the habitability of a planet through
atmospheric losses (Jakosky et al. 2015). For other stellar
systems, we expect space weather to be important. Addition-
ally, extrasolar space weather may differ significantly from our
own system as exoplanets can orbit at very close distances, and
the stellar activity and magnetic field strength can be greatly
enhanced. In this work, we combine knowledge of solar space
weather with inferred properties of other systems to determine
the frequency and severity of CME impacts for two specific
cases—a hot Jupiter orbiting a solar-type star, and an exoplanet
in the habitable zone of an M dwarf.

1.1. Hot Jupiters

“Hot Jupiters” were originally one of the most frequently
discovered types of exoplanet. Hot Jupiters tend to orbit solar-
like stars (F-, G-, and K-type stars) at very close distances,
typically of the order of 10 stellar radii (R*, 0.046 Astrono) and
as small as 3 R* (Hebb et al. 2009). The close orbits lead to a
systematic bias in the frequency of observed hot Jupiters; these

planets are the easiest to observe using radial-velocity or
transits. For example, the transit of the exoplanet HD 189733b
results in a photometric depth of 3% in the light curve (Bouchy
et al. 2005). While hot Jupiters may account for approximately
20% of discovered exoplanets, Wright et al. (2012) suggest that
only 1% of F-, G-, and K-type stars host a hot Jupiter.
Hot Jupiters are not habitable exoplanets due to their close

orbits and large size. However, hot Jupiters present an
opportunity to study planetary systems unlike anything else
in our own solar system. The study of hot Jupiters has yielded
new insights concerning the evolution of planetary systems
because hot Jupiters are thought to form at farther radial
distances and migrate in toward the star (e.g., Kozai 1962 and
Lin et al. 1996). Hot Jupiters are expected to have very
different planetary weather than is observed in the solar system.
The large asymmetry between the dayside and nightside
temperatures can lead to extreme atmospheric winds as fast
as 3000 m s−1 (Kataria et al. 2013).
The small orbital distances lead to high levels of insolation,

which can inflate the radii of hot Jupiters and lead to lower
planetary densities (Burrows et al. 2007). The high levels of
X-ray and EUV (XUV) radiation can cause the inflated
atmospheres to escape at extreme rates. For HD 189733b,
Vidal Madjar (2003) determine a minimum atmospheric escape
rate of 1010 g s−1, with observations consistent with values up
to several orders of magnitude higher. More recent measure-
ments by Lecavelier Des Etangs et al. (2010) are consistent
with a rate of 1010 g s−1. The hot, inflated atmosphere would be
extremely vulnerable to erosion from CME impacts unless
shielded by a planetary magnetic field (Lammer et al. 2006;
Khodachenko et al. 2007a). For comparison, Jakosky et al.
(2015) estimate that the 2015 March 08 CME impact increased
the Martian atmospheric escape to 104 g s−1. The quiescent
atmospheric loss of a hot Jupiter greatly exceeds values seen in
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