Stellar Clustering in 4D

Philip F. Hopkins, the FIRE & STARFORGE collaborations

www.tapir.caltech.edu/~phopkins

Mike Grudic, David Guszejnov, Matt Orr, Sarah Loebman, Samantha Benincasa, Alex Gurvitch, Stella Offner, Anna Rosen, Eliot Quataert, Drummond Fielding, Sam Ponnada, Gina Panopoulou, Iryna Butsky, and many more

Massive Stars are (Statistically) Clustered on All Scales

Clustering (in space AND time) Matters

STAR FORMATION (~au-pc) scales

- Multiplicity (disk & core)
- "Cluster" formation
- Sub-cluster dynamics/ merging/supermassive stars/IMBHs/LIGO sources
- IMF: turbulent fragmentation
 & competitive accretion
- GMC destruction & lifetimes

STARFORGE:

David Guszejnov & Mike Grudic + Anna Rosen & Stella Offner

IMF: arXiv:2205.10413 Jets are crucial: arXiv: 2010.11249 Global dynamics: arXiv:2201.00882 Cluster formation: arXiv:2201.01781

FIRE-3 + STARFORGE

From Cosmological scales to to $\ \ll M_{\odot}$ resolution in GMCs, ultra-faints, & galactic nuclei

Yellow: hot (>million K)

Pink: warm (~10,000 K) Blue: cold (~100 K)

240 Myr

+STARFORGE

(prep)

10pc

Oyr

Gas

- Galactic Outflows & Chimneys
- Super-Bubbles & ISM Structure
- GMCs/Star cluster IMFs
- Dark Matter Profiles
- Stellar & Gas Kinematics
- Re-ionization (FUV Escape Fractions)
- Outflow Duty Cycles/Observability
- Abundances/Enrichment

1 kpc

FIRE-3 (arXiv:2203.00040):

PFH '14 M. Sparre arxiv:1510.03869

Proto-Milky Way: Gas Temperature:

"Constant" Star Formation & Feedback

"Dynamical" Star Formation & Feedback

Imprints of Clustering in Dwarfs

Feedback Saves Cold Dark Matter?

NO EXOTIC PHYSICS?

z=3.5

Di Cinto+ 16

S. Muratov (arXiv:1501.03155)

10 kpc

"feedback-dominated" low mass gas rich cold, violent outflows

to

"gravity-dominated" high mass gas poor gentle hot gas "venting"

C. Hayward (arxiv:1510.05650)

z = 0.84

Transitions Key to Disk Formation

What is "Bursty-ness"? Do We Understand Any of This?

Clustering is *inevitable* in gravitational structure

BUT... Wide Range of Behaviors

PFH, Gurvich, Shen, Hafen+: arXiv:2301.08263

AND... Correlation functions aren't everything

identical power spectra

• Theory:

- Correlations important
- Highly non-linear
- How to compare? What's the metric?

• Observations:

- Need additional diagnostics
- Kinematics of the young stars key
- Compare to gas
- Large samples with different ages, to infer bursty-ness!

What Physically Influences Burstiness on "Global" Scales?

Many ideas: All mutually correlated....

- Mass (halo or stellar or gas)
- lotential shape
- Gas fraction
- Feedback rates/strengt/s/physics/forms
- SF criteria (rates)
- Formation times
- Spin (gas or have)
- Toomre Q
- Cooling/_ynamical times/rates
- Nume ical methods
- Me allicities
- Corretion rates
- CGM vs ISM vs IGM temperature / pressure

Most *directly* sensitive to:

<u>Depth</u> of the potential

PFH, Gurvich, Shen, Hafen+: arXiv:2301.08263

Why?

"Overshoot" and ejection of the ISM is minimized

Chris Hayward (HH17): Predicted "overshoot zone"

- 1. Deeper potential = harder to eject the ISM?
 - given SF in ISM from *local* self-regulation, ability to eject scales $\sim \sigma/V_{\rm esc}$? amplitude?
- 2. Ejected gas travels less far, stays in/near disk?
 - SF always *locally* bursty (~kpc or galaxy center), but "ejected" gas stays in disk? coherence?
- 3. Recycling time reduced: outflows \rightarrow fountains?

Lots to do!

"Zoom in" on AGN accretion disks

Sarah Wellons Angles-Alcazar (2203.06201)

Axion & dissipative & EMD dark matter tests

X. Jacob Shen (2206.05327) Isabelle Sands

Stellar mergers & hyper-Eddington accretion -> IMBH

Yanlong Shi (2008.12290)

Kyle Kremer

B-field diagnostics: Zeeman, RM/DM, dust polarization

Gina Panopoulou

Sam Ponnada (2206.04764)

SF is "coherent" (*clustered* in space & time) on all scales

- "How Clustered?" matters, & deeply uncertain
 - "How strong?" (amplitude)
 - "How coherent?" (phases)
 - "What scales?" (spatial/time coherence)
 - "Is it stable?" (self-reinforcing/non-linear)