

Prof. Hugues Sana Massive binaries, the Magellanic Clouds and the UVEX connection

KU LEUVEN

erc

Gravitational wave sources

First Stars & Galaxy formation and evolution

Massive.

stars

Supernova(progenitors), GRBs & compact objects

Nucleosynthesis & Feedback

Pairing mechanism

Likely rooted in stellar formation

Clues from

High multiplicity fraction at very early ages (~1 Myr) Bordier+2021

Pairing mechanism

Likely rooted in stellar formation

Clues from

High multiplicity fraction at very early ages (~1 Myr) Bordier+2021

> Milky Way Open Clusters Sana+2012

Challenges

- Statistics of tight binaries
- Diversity of channels
- Uncertain physics
- Rapid interaction phases
- Metallicity dependance

30 Doradus

VLT Flames Tarantula Survey (PI: Evans)

- 800 OB stars
- 6 epochs

Tarantula Massive Binary Monitoring (PI: Sana)

- 100 O-type binaries
- 32 epochs

B-type Binary Monitoring (PI: Taylor)

- 100 B-type binaries
- 25 epochs

SMC equivalent still missing (4MOST will do part of it)

Evans+2011, Almeida+2017, Villasenor+2021

Early-main sequence multiplicity properties

$$f_{logP} \propto (\log P)^{\pi}$$
 with $\pi = -0.5 \dots 0.0$

$$f_q \propto (q)^k$$
 with $k \sim 0.0$

2016, Kiminki+2014, Barba 2017, Moe & di Stefano 2017, ...

Milky Way: Sana+ 2012 30Dor/LMC: Shenar+ 2022

based on Sana+2012,2013

Systematic mapping crucuially missing

Systematic mapping crucuially missing

Figure adapted from Langer+20

VFTS 352 (LMC): the most massive overcontact system.

Abdul-Masih+2019

No helium or nitrogen enrichement despite rapid rotation, but hotter than expected → no (MESA) model can reproduce this

Abdul-Masih+2019

 \rightarrow Understand overcontact structure (Fabry+2022, 2023)

POST INTERACTION PRODUCTS AND STRIPPED STARS

Initial mass: 11Msun, Initial Period ~ 30d

4

Laplace+ 2021

VFTS 291: 12 B star + 2 Msun stripped star

Figure from Villasenor+2023 With result from: Bodensteiner+2022, ElBadry+2020,21ab,22ab, Frost+2022 Saracino+2023, Shenar+2022,2023a,b, Wang+2021

Fast rotators and

Massive Runaways

Post supernova binary interaction products

or

Dynamical Ejection

30 Doradus O stars Distribution of (projected) rotation rates

O-star runaway in 30 Doradus

Dec (J2000)

Sana+2023

MASSIVE BINARIES WITH QUIET BLACK HOLES

2% of O-type stars should have a black hole companions (LMC) Langer+2020

→ Milky Way: A handfull with 3kpc
→ 30 Dor : 15 O+BH binaries

We might find

BLACK HOLE IMPOSTERS

What we are looking for:

(very) Low mass companion

Rapidly rotating companion

Stripped He-star companion

Slide concept: L. Mahy

HD130298: 25 M $_{\odot}$ O star + >7M $_{\odot}$ BH eccentric binary

HD130298: 25 M_☉ O star + >7M_☉ BH eccentric binary

Mahy et al. 2022

Shenar et al. 2022a

FUV spectroscopy as the final check: COS data on their way

7% flux contribution of a 5Msun stripped Star

Mahy/Sana in prep

FUV spectroscopy as the final check: COS data on their way

FUV spectroscopy as the final check: COS data on their way

Constraints on explosion physics

Marchant+ in prep

UVEX Magellanic Clouds Survey

Fig. D-1. The UVEX 12 deg² FOV covers the SMC/LMC in 7 pointings, and the ~2.25" PSF resolves all but the densest star clusters. The UVEX slit spectrograph provides 2" - 16" widths for point and diffuse objects and <1Å resolution spectral data for every pointing for all sources that lie along its 1° length.

Census of short period (hot) binaries

Systematic mapping crucuially missing

Systematic mapping crucuially missing

Treasury data set to unravel stellar (binary) physics in the GW and cosmological context

Celteration We or easy We have a second of the second of t

JVEX

FUV band: key temperature diagnostic \rightarrow (Near) complete **census of hot stars**

Extinction law : absolutely critical for atmospheric analysis !

Multi-epochs: (Near) complete **census of short-period (hot) binaries**

Metallicity dependance