UV Diagnostics of Stellar Winds in Magellanic Cloud Massive Stars

Paul Crowther

UVEX Community Workshop 2023: "Synergies and New Opportunities"

Massive stars at high-z

Stacked spectra of 30 Lyman-break galaxies at z=2.4 (Steidel+2016)

SMACS 0723 JWST high-z galaxies

Star formation in Local Group

Low star formation rates aside from M31, M33, LMC (Kennicutt+2008, *McQuinn+2015). High A_V for IC10

Evolution of metal-poor massive stars

- Winds

 (weaker at low
 metallicity)
- Mixing (traced via CNO abundances)
- Binarity

 (close binary
 evolution:
 Gotberg &
 Sana talks)

LMC Tarantula Nebula: Bestenlehner+2021

Wind Diagnostics

Optical/IR wind diagnostics

Free-free excess (Wright & Barlow 1975, Panagia & Felli 1975) Useful for Galactic OB stars, but sensitive to **wind clumping** (Rubio-Diez+2022)

dependent (Crowther+2002)

Metal-dependent OB winds

Mokiem+2007 (H α mass-loss rates of MW/LMC/SMC OB stars)

Metal-dependent OB winds

Mokiem+2007 (H α mass-loss rates of MW/LMC/SMC OB stars)

UV wind diagnostics

Unsaturated resonance lines sensitive to wind clumping (Crowther+2002)

Clumps can become optically thick, especially in strong resonance lines.

Clumping in 1D (Brands+2022)

Massive stars in LMC

NASA/Swift/S.Immler (Goddard) & M.Siegel (Penn State)

Tarantula

Massive stars in SNC SMC 1/5 Z_{sun} NGC346 450 O stars (Kalari+2018)

NASA/Swift/S.Immler (Goddard) & M.Siegel (Penn State)

SF regions in Mag Clouds

SMC (1/5 Solar)

3.2' (40pc @ 60kpc)

2.6' (40pc @ 50kpc)

LMC (1/2 Solar)

LMC: R136 resolved in UV

LMC: R136 resolved in UV

Crowther+2016

Brands+2022

LMC: Mass-loss prescription

HST/STIS UV spectroscopy of R136 confirms youth (~1.5Myr). Hell 1640 emission from very massive stars (WR stars dominate at later ages)

$$\dot{M} = f(L, M, T, Z, v_{rot})$$

Sensitive to L/L_{Edd} Brands+2022

SMC: NGC 346 core resolved in UV

SMC: Weak winds excl. HD5980 (WN+..)

HST/ULLYSES

DDT initiative providing STIS/E140M or COS/G130M+G160M spectroscopy of >100 OB stars in each of Magellanic Clouds + STIS/E230M or COS/G190M for B supergiants (+ very metal-poor Local Group dwarf targets) plus selected Of/WN and WR stars

HST/ULLYSES

SMC

Vink+2023

ULLYSES NUV Osupergiant

YSES mid O dwarfs 10 8 LMC LMC LMC 08V 07V 05.5V 2 5 4 M. Willy **PGMW3120** Sk-67 191 Sk-67 118 0 0 0 -2000 -2000 2000 4000 -4000 0 2000 4000 -4000 -4000 -2000 0 2000 0 4000 5.0 3.0 2 **SMC SMC** SMC 08V 06V 07V M M MWhyme 2.5 1.5 AzV267 N346 ELS51 N346 MPG368 0 0 0 -2000 2000 -4000 -2000 2000 4000 -4000 -2000 2000 -4000 0 0 4000 0 4000 Velocity (km/s) Velocity (km/s) Velocity (km/s)

R~2000 for UVEX spectrograph well suited to wind velocities of O stars via CIV 1550 P Cygni profiles (recoverable for *wide* slit from IUE experience).

SMC O stars possess very weak wind signatures (very few of which exceed ~40 M_{sun}, Schootemeijer+2021), so UVEX better suited to comprehensive study of LMC OB population (large numbers exceeding ~40 M_{sun}, stronger winds).

UVEX + 4MOST/1001MC

Optical spectroscopy of ALL massive stars in Magellanic Clouds anticipated via 4MOST/1001MC survey (2024-2028).

UVEX + Tarantula

- 60' UVEX slit permits spatially resolved UV spectroscopy of extended star forming regions.
- Richest SF region within Magellanic Clouds is the Tarantula Nebula

Region	Angular radius (")	Physical radius (pc)	N(LyC) (10^{51} ph s ⁻¹)	Content
R136a	0.8	0.2	2	R136a1 (WN5h), R136a2 (WN5h)
R136	4	1.0	4	R136b (O4 If/WN8), R136c (WN5h+)
NGC 202	70 80	20.	9	R140a (WC4+WN6+), Mk34 (WN5h+WN5h)
Tarantul	a 600	150.	12	Hodge 301, PSR J0537-6910 (pulsar), N157B (SNR)

(Crowther 2019)

Tarantula (BPT, SFR)

Integrated UV spectrum of core acquired with IUE (Vacca+1995)

Tarantula (content)

Telescope/inst	Target	N(O-type)	N(B-type)	N(WR)	N(Of/WN)	N(A+)
VLT/FLAMES	30 Dor	369	436	9	6	35
HST/STIS	R136	57		3	2	••
VLT/MUSE	NGC 2070	115	79	••	••	1
Other	30 Dor	29	8	16		5
Total	30 Dor	570	523	28	8	41

- Massive star population well studied optically (VFTS + follow up TMBM+BBC)
- >90% of OB stars lack UV spectroscopy so wind properties remain poorly constrained

Very metal-poor templates

Summary

- Similarities between high-z JWST Lyman break galaxies & Magellanic Clouds - latter provide detailed evolution of metalpoor massive stars (mass-loss, mixing, binarity)
- Evolution dominated by high mass-loss for ~100 M_{sun} stars (proximity to Eddington limit), much less so for weak winds of 10-20 M_{sun} stars (apart from blue and red supergiant phases), significance of mass-loss unclear for ~50 M_{sun} stars
- UV more sensitive to clumped mass-loss diagnostics in hot luminous stars than optical/IR, with high quality templates from HST/ULLYSES (~100 OB stars in each Magellanic Cloud)
- UVEX offers prospect of UV spectroscopy for 1000+ metal-poor OB stars, completing current spectroscopic surveys of Tarantula Nebula (VFTS) + upcoming surveys (4MOST/1001MC)

ULLYSES SMC HR diagram 6.6 SMC 6.4 6.2 2 Myr 6.0 5.8 Myr $60 M_{\odot}$ 5.6 log L/L_O 5.4 $40 M_{\odot}$ 5.2 8 Myr 🔴 5.0 25 M_O 4.8 4.6 16 Myr WR 4.4 15 M_☉ $10 \ {\rm M}_{\odot}$ OВ 4.2 ZAMS Brott+2011 4.0 5.0 4.8 4.6 4.2 5.2 4.4 4.0 Log T_{eff}

Metallicity in Mag Clouds

HII regions (Kurt & Dufour 1998; Garnett 1999; Peimbert 2003; Tsamis+ 2003; Lebouteiller+ 2008; Toribio Sam Cipriano+ 2017). Stars (Hill+1995, 1997, 1999; Venn 1999; Korn+ 2000, 2005; Andreivsky+2001; Trundle+2007; Hunter+2007, 2009; Dufton+2018). SNR (Dopita+2019)

Mass-loss: Very massive stars

High Eddington parameter for very massive main sequence stars (Brands+2022) + WR prescription (Sander & Vink 2020) lead to modest final masses at LMC metallicity.

Mass-loss: Moderately massive stars

Maeder & Meynet 1987

Massive stars at low-z

Target galaxies

Target star clusters

FUV survey of 20 young star clusters from LEGUS "Clusters in the Uv as EngineS" (CLUES, Sirressi+2022)

M74-YSC2 (Sirressi+2022). See Chandar+2004, James+2014 for more UV spectroscopy of young massive clusters