Understanding very close low-mass binaries

Veronika Schaffenroth

Institute for Physics and Astronomy, University of Potsdam Thüringer Landessternwarte Tautenburg

First UVEX Community Workshop, 13.3.23

Companions around solar-type stars

 \rightarrow Most stars are not born alone

fraction of

- close binaries ~ 15%
 → interaction between components at least once in their lifetime: mass transfer
- brown dwarfs < 10 AU:
 < 1% brown dwarf desert
- hot Jupiters (< 0.5 AU): $\sim 1\%$

Winn & Fabrycky 2015

Grether & Lineweaver 2008

Common Envelope Evolution (CEE)

Ohlmann et al. 2016

Common Envelope Evolution (CEE)

 \rightarrow important for the understanding of close binary evolution

https://astrobites.org/2013/02/12/are-we-seeing-common-envelopes-after-all/cee/

- \rightarrow poorly understood
- \rightarrow short-lived phase (~ 1000 d)
- $\rightarrow\,$ not possible to observe directly $\rightarrow\,$ post-CE systems
- \rightarrow gravitational wave calibration sources
- \rightarrow SN Ia progenitors

Hot subdwarfs in very close binaries

 $sdB \equiv stripped$ low-mass, helium burning core

 \Rightarrow post-common envelope binaries: sdB + dM/BD or WD

Light variation of compact sdB binaries

Ellipsoidal Variations (Jackson et al. 2012)

Finding new (eclipsing) close binaries

 \rightarrow color selection or crossmatch of hot subluminous star catalogue with different photometric surveys to find close binaries with light variations

Schaffenroth et al. 2019

 \rightarrow more than 150 new eclipsing post-common envelope systems: EREBOS project

Searching for hot subdwarf binaries with light variations

TESS Asteroseismic Science Consortium WG-8:

 \Rightarrow 3500 hot subdwarf candidates from Geier et al. 2019 observed

Targets observed by TESS

Schaffenroth et al. 2022

 \rightarrow 85% of known sdB binaries observed: classifying the nature of the companion of almost all sdB binaries \rightarrow about 100 new sdB binaries with light variations

P-min. comp. mass diagram of the close sdB binaries nature of companion of 120 of 160 known, close sdB binaries derived: 2/3 sdB+WD, 1/3 sdB+dM/BD

P-companion mass diagram of the close sdB binaries

Light curve and spectroscopic analysis of compact sdB binaries

Spectral energy distribution

- disentangling temperature and reddening
- combination with spectroscopy and *Gaia* parallax: mass determination $M = gR^2/g$

- Supernova la progenitors consisting of hot subdwarfs and massive WD companions are young
- found in direction of the disk
- easier to find in UV, less crowded

- influence of irradiated hemisphere to the spectrum much less in the UV
- better parameter determination
- finding also systems in the disk
- UV spectroscopy essential for parameter determination in the hottest primaries (sdO, WD)
- no UV light curves available so far

Inflation observed in sdB/WD with dM or BD companions

Haswell & Fossati 2012

- due to strong UV radiation?
- evaporation, as observed in close-in planets?
- extended atmosphere seen in the UV

Questions?

Eclipsing Reflection Effect Binaries from Optical surveys